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Abstract—We find a simplest representation for the general solution to the system of the static
Lamé equations of isotropic linear elasticity in the form of a linear combination of the first derivatives
of three functions that satisfy three independent harmonic equations. The representation depends
on 12 free parameters choosing which it is possible to obtain various representations of the general
solution and simplify the boundary value conditions for the solution of boundary value problems as
well as the representation of the general solution for dynamic Lamé equations. The system of Lamé
equations diagonalizes; i.e., it is reduced to the solution of three independent harmonic equations.
The representation implies three conservation laws and some formula for producing new solutions
which makes it possible, given a solution, to find new solutions to the static Lamé equations by
derivations. In the two-dimensional case of a plane deformation, the so-found solution immediately
implies the Kolosov–Muskhelishvili representation for shifts by means of two analytic functions of
complex variable. Two examples are given of applications of the proposed method of diagonalization
of the two-dimensional elliptic systems.
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The article develops the approach that was suggested in [1, 2]. For an isotropic material and without
influence of the volume forces, the system of static Lamé equations in displacements of linear elasticity
theory has the form

[(λ + μ)∂ij + μ∂kkδij ]uj = 0, i, j, k = 1, 2, 3, (1)

where λ and μ are the Lamé constants; δij is the Kronecker symbol; uj is the displacement vector; ∂j

is the derivative with respect to the coordinate xj , j = 1, 2, 3; ∂ij = ∂i∂j is the second derivative with
respect to xi and xj ; and repeated indices imply summation.

For system (1), there exist different representations of the general solution by means of the resolving
potentials [3, 4]. In the present article, we obtain a simplest representation for the general solution to (1)
in the form of a linear combination of the first derivatives of three functions satisfying three independent
harmonic equations. This representation looks as follows:

uj = (α∂j + εjmsam∂s)ϕ1 + (β∂j + εjmsbm∂s)ϕ2 + (γ∂j + εjmscm∂s)ϕ3, j = 1, 2, 3, (2)

where the functions ϕ1, ϕ2, and ϕ3 meet the equations
∂kkϕ1 = f1, ∂kkϕ2 = f2, ∂kkϕ3 = f3, (3)

and the functions f1, f2, and f3 satisfy

[(λ + 2μ)α∂i + μεimsam∂s]f1 + [(λ + 2μ)β∂i + μεimsbm∂s]f2

+ [(λ + 2μ)γ∂i + μεimscm∂s]f3 = 0, i = 1, 2, 3. (4)

Here α, β, γ, am, bm, and cm with m = 1, 2, 3 are arbitrary parameters such that the three quantities
εsnp(αbncp + βcnap + γanbp), s = 1, 2, 3, cannot vanish simultaneously. Here εjms is the antisymmetric
Levi–Civita tensor.
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Choosing the free parameters, we can obtain various versions of the representations of the general
solution (2)–(4) and simplify the boundary conditions. For am = 0 with m = 1, 2, 3, β = 0, and γ = 0,
(2)–(4) imply the representation [1] of the general solution for the dynamic equations (1).

Denoting by A, C, D, and B the matrices of the operators in (1)–(4), where D is a diagonal matrix,
we obtain AC = BD. Then the general solution (2)–(4) to (1) (Au = 0) has the form [5]

u = Cϕ, Dϕ = f, Bf = 0. (5)

The matrix of the operator A of (1) is as follows:

A =

⎡
⎢⎢⎢⎣

(λ + μ)∂11 + μ∂kk (λ + μ)∂12 (λ + μ)∂13

(λ + μ)∂21 (λ + μ)∂22 + μ∂kk (λ + μ)∂23

(λ + μ)∂31 (λ + μ)∂32 (λ + μ)∂33 + μ∂kk

⎤
⎥⎥⎥⎦ . (6)

The determinant of the matrix (6) is equal to

|A| = (λ + 2μ)μ2(∂kk)3 = D1D
2
2, D1 = (λ + 2μ)∂kk, D2 = D3 = μ∂kk, (7)

while the matrix D in the solution (5) is diagonal:

D = diag (D1,D2,D3) =

⎡
⎢⎢⎢⎣

(λ + 2μ)∂kk 0 0

0 μ∂kk 0

0 0 μ∂kk

⎤
⎥⎥⎥⎦ . (8)

From (7) we see that the Lamé system (1) is elliptic if |A| > 0 for all real values of the symbols ∂k,
∂kk �= 0; i.e., the constants satisfy

λ + 2μ > 0, μ �= 0; (9)

system (1) is strongly elliptic if [6]

λ + 2μ > 0, μ > 0. (10)

The specific deformation energy 2Φ = λεiiεkk + 2μεijεij , εij = (∂iuj + ∂jui)/2 is a positive definite
quadratic form if [3]

3λ + 2μ > 0, μ > 0. (11)

The domains of admissible values for the constants λ and μ defined by (9)–(11) are shown in the figure.
The domain of ellipticity for (9) consists of three parts I, II, and III; moreover, λ and μ can be negative.
The domain of elasticity for (11) is part II; here λ can be negative but μ > 0. The domain of strong
ellipticity for (10) includes parts II and III. If the constants λ and μ belong to parts I and III then
equations (1) are no longer equations of elasticity theory because conditions (11) are not fulfilled.

Suppose that the matrices C and B have the form Cjq = αjpq∂p and Bip = βisp∂s, where αjpq and
βisp are some coefficients. Choosing the displacements in the form

uj = Cjqϕq = αjp1∂pϕ1 + αjp2∂pϕ2 + αjp3∂pϕ3, j, p = 1, 2, 3,

and requiring the fulfillment of the relation

AC = BD, AijCjq = BipDpq, (12)

we obtain the matrices

C =

⎡
⎢⎢⎢⎣

α∂1 + a2∂3 − a3∂2 β∂1 + b2∂3 − b3∂2 γ∂1 + c2∂3 − c3∂2

α∂2 + a3∂1 − a1∂3 β∂2 + b3∂1 − b1∂3 γ∂2 + c3∂1 − c1∂3

α∂3 + a1∂2 − a2∂1 β∂3 + b1∂2 − b2∂1 γ∂3 + c1∂2 − c2∂1

⎤
⎥⎥⎥⎦ , (13)
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Domain of admissible values for the constants λ and μ defined by (9)–(11)

B =

⎡
⎢⎢⎢⎣

α∂1 + μ
λ+2μ(a2∂3 − a3∂2) λ+2μ

μ β∂1 + b2∂3 − b3∂2
λ+2μ

μ γ∂1 + c2∂3 − c3∂2

α∂2 + μ
λ+2μ(a3∂1 − a1∂3) λ+2μ

μ β∂2 + b3∂1 − b1∂3
λ+2μ

μ γ∂2 + c3∂1 − c1∂3

α∂3 + μ
λ+2μ(a1∂2 − a2∂1) λ+2μ

μ β∂3 + b1∂2 − b2∂1
λ+2μ

μ γ∂3 + c1∂2 − c2∂1,

⎤
⎥⎥⎥⎦ ,

or, briefly,

Cjq = [α∂j + εjmsam∂s, β∂j + εjmsbm∂s, γ∂j + εjmscm∂s],

Bip =
[
α∂i +

μ

λ + 2μ
εimsam∂s,

λ + 2μ
μ

β∂i + εimsbm∂s,
λ + 2μ

μ
γ∂i + εimscm∂s

]
,

where α, β, γ, am, bm, and cm with m = 1, 2, 3 are free parameters.

A straightforward check shows that (12) holds for the matrices (6), (8), and (13). The determinants
of (6) and (8) obviously coincide: |A| = |D| = D1D

2
2. The determinant of the matrix C in (13) is equal to

|C| = [εsnp(αbncp + βcnap + γanbp)∂s]∂kk

= {[α(b2c3 − b3c2) + β(c2a3 − c3a2) + γ(a2b3 − a3b2)]∂1

+ [α(b3c1 − b1c3) + β(c3a1 − c1a3) + γ(a3b1 − a1b3)]∂2

+ [α(b1c2 − b2c1) + β(c1a2 − c2a1) + γ(a1b2 − a2b1)]∂3}∂kk. (14)

The matrix B in (13) has the same structure as C. To obtain |B|, we must replace in (14) the coefficients

am → μ

λ + 2μ
am, β → λ + 2μ

μ
β, γ → λ + 2μ

μ
γ;

then

|B| =
[
εsnp

(
αbncp +

λ + 2μ
μ

βcn
μ

λ + 2μ
ap +

λ + 2μ
μ

γ
μ

λ + 2μ
anbp

)
∂s

]
∂kk = |C|,

i.e., the determinants of C and B coincide.

The free parameters in (13) must be such that the determinant |C| in (14) is nonzero; i.e., the
coefficients εsnp(αbncp + βcnap + γanbp), s = 1, 2, 3, at ∂s must not vanish simultaneously.

For the dynamic equations (1), the matrices C and B in (13) must coincide, then

am =
μ

λ + 2μ
am, β =

λ + 2μ
μ

β, γ =
λ + 2μ

μ
γ;
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moreover, am = 0 for m = 1, 2, 3, β = 0, γ = 0, Cjp = Bjp = [α∂j , εjmsbm∂s, εjmscm∂s]; i.e., the
matrices are similar to those obtained earlier for dynamics [1].

Since the matrix D in (8) looks as diag (λ + 2μ, μ, μ)diag (∂kk, ∂kk, ∂kk), in the product BD,
the factor diag (λ + 2μ, μ, μ) can be attached to B; then B takes the form (4), and in (3) D =
diag (∂kk, ∂kk, ∂kk).

Thus, granted (6), (8), (12), and (13), the general solution (2)–(4) to (1) in the form (5) looks as
follows:

u1 = (α∂1 + a2∂3 − a3∂2)ϕ1 + (β∂1 + b2∂3 − b3∂2)ϕ2 + (γ∂1 + c2∂3 − c3∂2)ϕ3,

u2 = (α∂2 + a3∂1 − a1∂3)ϕ1 + (β∂2 + b3∂1 − b1∂3)ϕ2 + (γ∂2 + c3∂1 − c1∂3)ϕ3,

u3 = (α∂3 + a1∂2 − a2∂1)ϕ1 + (β∂3 + b1∂2 − b2∂1)ϕ2 + (γ∂3 + c1∂2 − c2∂1)ϕ3,

(15)

where the functions ϕ1, ϕ2, and ϕ3 satisfy three independent equations (3) and the functions f1, f2, and
f3 enjoy

[(λ + 2μ)α∂1 + μ(a2∂3 − a3∂2)]f1 + [(λ + 2μ)β∂1 + μ(b2∂3 − b3∂2)]f2

+ [(λ + 2μ)γ∂1 + μ(c2∂3 − c3∂2)]f3 = 0,

[(λ + 2μ)α∂2 + μ(a3∂1 − a1∂3)]f1 + [(λ + 2μ)β∂2 + μ(b3∂1 − b1∂3)]f2

+ [(λ + 2μ)γ∂2 + μ(c3∂1 − c1∂3)]f3 = 0, (16)

[(λ + 2μ)α∂3 + μ(a1∂2 − a2∂1)]f1 + [(λ + 2μ)β∂3 + μ(b1∂2 − b2∂1)]f2

+ [(λ + 2μ)γ∂3 + μ(c1∂2 − c2∂1)]f3 = 0.

The strains σij = σji are defined via the displacements by Hooke’s law

σij = λδij∂kuk + μ(∂iuj + ∂jui);

moreover, with account taken of (2) and (15), we infer

σij = [α(λδij∂kk + 2μ∂ij) + μ(εims∂j + εjms∂i)am∂s]ϕ1 + [β(λδij∂kk + 2μ∂ij)
+ μ(εims∂j + εjms∂i)bm∂s]ϕ2 + [γ(λδij∂kk + 2μ∂ij) + μ(εims∂j + εjms∂i)cm∂s]ϕ3.

Relations (12) imply

C ′A = DB′, CipAij = DpiBji, (17)

where the prime stands for matrix transposition. If Aũ = 0 then we obtain from (17) that C ′Aũ =
DB′ũ = Dϕ = 0; i.e., ϕ = B′ũ satisfy three separate harmonic equations. Granted (12) and (17), the
formulas u = Cϕ, ϕ = B′ũ, and Aũ = 0 take the solutions to the equations Au = 0 and Dϕ = 0 to
each other. In general, there is no one-to-one correspondence between u and ϕ though A and D are
equivalent as matrices since C and B are nondegenerate square matrices. Therefore, to avoid the loss of
a part of the solutions, in the general solution (5) or (15), (3), (16), we take account of the functions f
that are the kernel of B.

Granted (13), the functions ϕp = Bipũi take the form

ϕ1 = [(λ + 2μ)α∂i + μεimsam∂s]ũi, ϕ2 = [(λ + 2μ)β∂i + μεimsbm∂s]ũi,

ϕ3 = [(λ + 2μ)γ∂i + μεimscm∂s]ũi.

The expression u = CB′ũ is a formula for producing new solutions; i.e., if Aũ = 0 then (12) and (17)
imply that u = CB′ũ is a new solution:

Au = ACB′ũ = BDB′ũ = BC ′Aũ = 0.
Hence, Q = CB′ is the symmetry (recursion) operator [5, 7]; in addition,

Qij = CipB
′
pj = CipBjp = Ci1Bj1 + Ci2Bj2 + Ci3Bj3

= (α∂i + εimsam∂s)[(λ + 2μ)α∂j + μεjnran∂r] + (β∂i + εimsam∂s)[(λ + 2μ)β∂j + μεjnran∂r]
+ (γ∂i + εimsam∂s)[(λ + 2μ)γ∂j + μεjnran∂r],
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or, involving (13), we infer

Q11 = (λ + 2μ)a1ka1k∂11 − (λ + 3μ)a1ka4k∂12 + (λ + 3μ)a1ka3k∂13

+ μa4ka4k∂22 − 2μa3ka4k∂23 + μa3ka3k∂33,

Q21 = (λ + 2μ)a1ka4k∂11 + [(λ + 2μ)a1ka1k − μa4ka4k]∂12

+ [−(λ + 2μ)a1ka2k + μa3ka4k]∂13 − μa1ka4k∂22 + μ(a1ka3k + a2ka4k)∂23 − μa2ka3k∂33,

Q31 = −(λ + 2μ)a1ka3k∂11 + [(λ + 2μ)a1ka2k + μa3ka4k]∂12

+ [(λ + 2μ)a1ka1k − μa3ka3k]∂13 − μa2ka4k∂22 + μ(−a1ka4k + a2ka3k)∂23 + μa1ka3k∂33;

Q12 = μa1ka4k∂11 + [(λ + 2μ)a1ka1k − μa4ka4k]∂12 + μ(−a1ka2k + a3ka4k)∂13

− (λ + 2μ)a1ka4k∂22 + [(λ + 2μ)a1ka3k + μa2ka4k]∂23 − μa2ka3k∂33;

Q22 = μa4ka4k∂11 + (λ + 3μ)a1ka4k∂12 − 2μa2ka4k∂13

+ (λ + 2μ)a1ka1k∂22 − (λ + 3μ)a1ka2k∂23 + μa2ka2k∂33;

Q32 = −μa3ka4k∂11 + [−(λ + 2μ)a1ka3k + μa2ka4k]∂12 + μ(a1ka4k + a2ka3k)∂13

+ (λ + 2μ)a1ka2k∂22 + [(λ + 2μ)a1ka1k − μa2ka2k)∂23 − μa1ka2k∂33;

Q13 = −μa1ka3k∂11 + μ(a1ka2k + a3ka4k)∂12 + [(λ + 2μ)a1ka1k − μa3ka3k]∂13

− μa2ka4k∂22 + [−(λ + 2μ)a1ka4k + μa2ka3k]∂23 + (λ + 2μ)a1ka3k∂33;

Q23 = −μa3ka4k∂11 + μ(−a1ka3k + a2ka4k)∂12 + [(λ + 2μ)a1ka4k + μa2ka3k]∂13

+ μa1ka2k∂22 + [(λ + 2μ)a1ka1k − μa2ka2k]∂23 − (λ + 2μ)a1ka2k∂33;

Q33 = μa3ka3k∂11 − 2μa2ka3k∂12 − (λ + 3μ)a1ka3k∂13

+ μa2ka2k∂22 + (λ + 3μ)a1ka2k∂23 + (λ + 2μ)a1ka1k∂33,

where we put

aik =

⎡
⎢⎢⎢⎢⎢⎢⎣

α β γ

a1 b1 c1

a2 b2 c2

a3 b3 c3

⎤
⎥⎥⎥⎥⎥⎥⎦

, (18)

aikajk = ai1aj1 + ai2aj2 + ai3aj3, i, j = 1, 4.

If uj is a solution to (1) then from (17) it follows that

Ci1Aijuj = D11Bj1uj = ∂kk[α(λ + 2μ)∂j + μεjmsam∂s]uj

= ∂s∂kk[α(λ + 2μ)us − μεsmjamuj ] = 0,

Ci2Aijuj = D22Bj2uj = ∂kk[β(λ + 2μ)∂j + μεjmsbm∂s]uj

= ∂s∂kk[β(λ + 2μ)us − μεsmjbmuj] = 0, (19)

Ci3Aijuj = D33Bj3uj = ∂kk[γ(λ + 2μ)∂j + μεjmscm∂s]uj

= ∂s∂kk[γ(λ + 2μ)us − μεsmjcmuj ] = 0.
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All three equations in (19) are similar and have the form of the conservation law ∂sAs = 0 [7, 8], where
the conserved currents are equal.

As = ∂kk[α(λ + 2μ)us − μεsmjamuj], s = 1, 2, 3,
Bs = ∂kk[β(λ + 2μ)us − μεsmjbmuj ], Cs = ∂kk[γ(λ + 2μ)us − μεsmjcmuj].

Rewrite (2) as
uj = ∂j(αϕ1 + βϕ2 + γϕ3) − εjsm∂s(amϕ1 + bmϕ2 + cmϕ3), j = 1, 2, 3. (20)

If in (20) we put αϕ1 + βϕ2 + γϕ3 = ϕ and −(amϕ1 + bmϕ2 + cmϕ3) = ψm for m = 1, 2, 3 then (20)
coincides in its form with the Kelvin–Lamé representation [4, 5].

Rewrite (4) in the form
∂i[(λ + 2μ)(αf1 + βf2 + γf3)] − εism∂s[μ(amf1 + bmf2 + cmf3)] = 0, i = 1, 2, 3. (21)

If in (21) we put
(λ + 2μ)(αf1 + βf2 + γf3) = g, −μ(amf1 + bmf2 + cmf3) = gm, m = 1, 2, 3, (22)

then (21) becomes
∂ig + εism∂sgm = 0, i = 1, 2, 3; (23)

moreover, (23) coincides in its form with the equations for the kernel of C in the Kelvin–Lamé
representation (20) [5].

In (22), there are four equations for three functions fi. For the solvability of this system, the rank of
the matrix aik in (18) must be three, and the determinant of the extended matrix

bik =

⎡
⎢⎢⎢⎢⎢⎢⎣

α β γ g/(λ + 2μ)

a1 b1 c1 −g1/μ

a2 b2 c2 −g2/μ

a3 b3 c3 −g3/μ

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

must be zero. Find the algebraic complements to the elements of the last column in (24):

m = −

∣∣∣∣∣∣∣∣∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣∣
, m1 =

∣∣∣∣∣∣∣∣∣

α β γ

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣∣∣∣
, m2 = −

∣∣∣∣∣∣∣∣∣

α β γ

a1 b1 c1

a3 b3 c3

∣∣∣∣∣∣∣∣∣
, m3 =

∣∣∣∣∣∣∣∣∣

α β γ

a1 b1 c1

a2 b2 c2

∣∣∣∣∣∣∣∣∣
, (25)

where
m = −(a1b2c3 + a2b3c1 + a3b1c2 − a3b2c1 − a2b1c3 − a1b3c2),

m1 = α(b2c3 − b3c2) + β(c2a3 − c3a2) + γ(a2b3 − a3b2),
m2 = α(b3c1 − b1c3) + β(c3a1 − c1a3) + γ(a3b1 − a1b3),
m3 = α(b1c2 − b2c1) + β(c1a2 − c2a1) + γ(a1b2 − a2b1).

In (25), the quantities mi coincide with the coefficients at ∂s in the determinant |C| in (14) and
m2

1 + m2
2 + m2

3 �= 0. This inequality means that the rank of the matrix aik in (18) is equal to three;
moreover, granted (25), the compatibility condition for (22) takes the form

μmg − (λ + 2μ)(m1g1 + m2g2 + m3g3) = 0. (26)

We must add (23) to (26): The matrix of system (26), (23) is as follows:

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

μm −(λ + 2μ)m1 −(λ + 2μ)m2 −(λ + 2μ)m3

∂1 0 −∂3 ∂2

∂2 ∂3 0 −∂1

∂3 −∂2 ∂1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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The determinant of this matrix

|M | = (λ + 2μ)(m1∂1 + m2∂2 + m3∂3)∂kk = (λ + 2μ)|C| �= 0

is proportional to the determinant |C| in (14). Hence, the solution of (26), (23) is equivalent to the
solution of (4) or (16).

The Kelvin–Lamé representation of the form (20) is applied in dynamic problems [4], and it is unclear
how to use it in the static case. Though this representation satisfies AC = CD [5], the matrices A and D
cannot be assumed equivalent since A is of third order, D is of fourth order, while C is a nonsquare
matrix of size 3 × 4. In algebra, some matrices A and D are regarded as equivalent if AC = BD, where
C and B are nondegenerate square matrices. The equivalence conditions are not fulfilled for the Kelvin–
Lamé representation [4, 5]. In the representation (2)–(4) or (15), (3), (16), all matrices are square (or
order three) and nondegenerate; i.e., the equivalence is fulfilled.

Consider the case of a plane deformation for which u1 and u2 are independent of x3 and u3 = 0. Then,
instead of (6)–(8), we infer

A =

⎡
⎣(λ + 2μ)∂11 + μ∂22 (λ + μ)∂12

(λ + μ)∂21 μ∂11 + (λ + μ)∂22

⎤
⎦ , (27)

|A| = (λ + 2μ)μ(∂11 + ∂22)2 = D1D2, D1 = (λ + 2μ)(∂11 + ∂22), D2 = μ(∂11 + ∂22);

D = diag (D1,D2) =

⎡
⎣(λ + 2μ)(∂11 + ∂22) 0

0 μ(∂11 + ∂22)

⎤
⎦ , |D| = |A|. (28)

The system of equations for u1, u2 is elliptic if (λ + 2μ)μ > 0. The matrices (13) take the form

C =

⎡
⎣α∂1 − a3∂2 β∂1 − b3∂2

α∂2 + a3∂1 β∂2 + b3∂1

⎤
⎦ , B =

⎡
⎣α∂1 − μ

λ+2μa3∂2
λ+2μ

μ β∂1 − b3∂2

α∂2 + μ
λ+2μa3∂1

λ+2μ
μ β∂2 + b3∂1

⎤
⎦ . (29)

The determinants of (29) are equal to |C| = |B| = (αb3 − βa3)(∂11 + ∂22); and also αb3 − βa3 �= 0.
The matrices (27)–(29) satisfy (12), (17). The factor diag (λ + 2μ, μ) in D in (28) can be attached to

the matrix B of (29). Then the solution to (1) in the two-dimensional case with matrix (27) is as follows:

u1 = (α∂1 − a3∂2)ϕ1 + (β∂1 − b3∂2)ϕ2, u2 = (α∂2 + a3∂1)ϕ1 + (β∂2 + b3∂1)ϕ2, (30)

(∂11 + ∂22)ϕ1 = f1, (∂11 + ∂22)ϕ2 = f2, (31)

f1 + [(λ + 2μ)β∂1 − μb3∂2]f2 = 0,
[(λ + 2μ)α∂2 + μa3∂1]f1 + [(λ + 2μ)β∂2 + μb3∂1]f2 = 0.

(32)

The following formulas are well known [9] (the bar over a letter stands for complex conjugation):

∂z = (∂1 − i∂2)/2, ∂z̄ = (∂1 + i∂2)/2, z = x1 + ix2, i =
√
−1. (33)

Involving (33), rewrite (30) and (32):

u1 + iu2 = ∂1[αϕ1 + βϕ2 + i(a3ϕ1 + b3ϕ2)] + i∂2[αϕ1 + βϕ2 + i(a3ϕ1 + b3ϕ2)]
= 2∂z̄[αϕ1 + βϕ2 + i(a3ϕ1 + b3ϕ2)], (34)

∂1[(λ + 2μ)(αf1 + βf2)] − ∂2[μ(a3f1 + b3f2)] = 0,
∂2[(λ + 2μ)(αf1 + βf2)] + ∂1[μ(a3f1 + b3f2)] = 0.

(35)

Equations (35) are the Cauchy–Riemann conditions for the analytic function (here the prime stands for
the derivative with respect to z):

Φ′
1(z) = (λ + 2μ)(αf1 + βf2) + iμ(a3f1 + b3f2).
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The last formula implies

Φ′
1(z) = (λ + 2μ)(αf1 + βf2) − iμ(a3f1 + b3f2),

2(αf1 + βf2) =
1

λ + 2μ
[
Φ′

1(z) + Φ′
1(z)

]
,

2i(a3f1 + b3f2) =
1
μ

[
Φ′

1(z) − Φ′
1(z)

]
.

(36)

Now, from (31) and (36) we obtain

2(∂11 + ∂22)(αϕ1 + βϕ2) = 2(αf1 + βf2), 2i(∂11 + ∂22)(a3ϕ1 + b3ϕ2) = 2i(a3f1 + b3f2);

2(∂11 + ∂22)[αϕ1 + βϕ2 + i(a3ϕ1 + b3ϕ2)]

= 2[αf1 + βf2 + i(a3f1 + b3f2)] =
λ + 3μ

(λ + 2μ)μ
Φ′

1(z) − λ + μ

(λ + 2μ)μ
Φ′

1(z).

Since ∂11 + ∂22 = 4∂z∂z̄ , from the last relation we find

2∂z∂z̄ [αϕ1 + βϕ2 + i(a3ϕ1 + b3ϕ2)] =
λ + 3μ

4(λ + 2μ)μ
Φ′

1(z) − λ + μ

4(λ + 2μ)μ
Φ′

1(z),

2∂z̄ [αϕ1 + βϕ2 + i(a3ϕ1 + b3ϕ2)] =
λ + 3μ

4(λ + 2μ)μ
Φ1(z) − λ + μ

4(λ + 2μ)μ
zΦ′

1(z) − ψ(z),
(37)

where ψ(z) is an analytic function that has appeared after integration over z. Put

λ + μ

4(λ + 2μ)μ
Φ1(z) = ϕ(z),

Then from (34) and (37) we infer

u1 + iu2 = κϕ(z) − zϕ′(z) − ψ(z), κ =
λ + 3μ
λ + μ

. (38)

Thus, in the two-dimensional case, the general solution (30)–(32) implies the well-known Kolosov–
Muskhelishvili formula (38) [9] which gives a representation for the displacements via two analytic
functions ϕ(z) and ψ(z) of the complex variable z = x1 + ix2.

Formula (38) is effectively applied to solving two-dimensional boundary value problems of elasticity
theory [9]. Nevertheless, in considering boundary value problems, we can also directly use solution (30)–
(32), and in the space problems, the general representations (3), (15), and (16). The presence of free
parameters in these representations makes it possible to simplify the boundary conditions.

Granted (29), in the two-dimensional case, we also find the symmetry (recursion) operator Q =
CB′ [5, 7]; here

Q11 = (λ + 2μ)(α2 + β2)∂11 − (λ + 3μ)(αa3 + βb3)∂12 + μ
(
a2

3 + b2
3

)
∂22,

Q21 = (λ + 2μ)(αa3 + βb3)∂11 +
[
(λ + 2μ)(α2 + β2) − μ

(
a2

3 + b2
3

)]
∂12 − μ(αa3 + βb3)∂22,

Q12 = μ(αa3 + βb3)∂11 +
[
(λ + 2μ)(α2 + β2) − μ

(
a2

3 + b2
3

)]
∂12 − (λ + 2μ)(αa3 + βb3)∂22,

Q22 = μ
(
a2

3 + b2
3

)
∂11 + (λ + 3μ)(αa3 + βb3)∂12 + (λ + 2μ)(α2 + β2)∂22.

Relations (17) and (19) imply the conservation laws [7, 8]

Ci1Aijuj = D11Bj1uj = ∂1(∂11 + ∂22)[α(λ + 2μ)u1 + μa3u2]
+ ∂2(∂11 + ∂22)[α(λ + 2μ)u2 − μa3u1] = ∂1A1 + ∂2A2 = 0,

Ci2Aijuj = D22Bj2uj = ∂1(∂11 + ∂22)[β(λ + 2μ)u1 + μb3u2]
+ ∂2(∂11 + ∂22)[β(λ + 2μ)u2 − μb3u1] = ∂1B1 + ∂2B2 = 0.
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Conservation laws can also be applied in solving boundary value problems [8].
The above-proposed method of diagonalization of the system of static equations of elasticity theory

and obtaining the general solution can also be applied to other systems of equations of elliptic type.
Consider, for example, two systems of equations from [10]. The matrices of the operators for these
systems are as follows:

A =

⎡
⎣ ∂11 − ∂22 −2∂12

2∂21 ∂11 − ∂22

⎤
⎦ , (39)

A =

⎡
⎣ ∂11 − ∂22

√
2 ∂12

√
2 ∂21 −∂11 + ∂22

⎤
⎦ . (40)

The matrix (39) is nonsymmetric; i.e., it does not correspond to equations of elasticity theory. But (40)
neither corresponds to the equations of elasticity theory for a real material. For (40), we would have the
matrix of elasticity moduli cij of the form

cij =

⎡
⎢⎢⎢⎣

1 1 +
√

2 0

1 +
√

2 1 0

0 0 −2

⎤
⎥⎥⎥⎦ . (41)

The matrix (41) is not positive-definite; i.e., it does not correspond to any real material.
The matrices (39) and (40) corresponds to elliptic systems [10] since

|A| = (∂11 − ∂22)2 + 4∂1122 = (∂11 + ∂22)2 > 0,

|A| = (∂11 − ∂22)(−∂11 + ∂22) − 2∂1122 = −(∂1111 + ∂2222)

= −(∂11 +
√

2∂12 + ∂22)(∂11 −
√

2∂12 + ∂22) < 0 (42)

for any real values of the symbols ∂1, ∂2, and ∂11 + ∂22 �= 0. Quadratic forms in the parentheses in the
last expression of (42) are positive definite.

Expressions (42) imply that the equivalent diagonal matrices D for (39) and (40) must have the form

D =

⎡
⎣ ∂11 + ∂22 0

0 ∂11 + ∂22

⎤
⎦ , (43)

D =

⎡
⎣ ∂11 +

√
2 ∂12 + ∂22 0

0 ∂11 −
√

2 ∂12 + ∂22

⎤
⎦ . (44)

Requiring (12) for (39) and (43), find the matrices

C =

⎡
⎣ α111∂1 + α121∂2 α112∂1

α121∂1 − α111∂2 −α112∂2

⎤
⎦ , B =

⎡
⎣ α111∂1 − α121∂2 α112∂1

α121∂1 + α111∂2 α112∂2

⎤
⎦ ; (45)

Moreover,

|C| = |B| = −α121α112(∂11 + ∂22).

The coefficients in (45) are free parameters but α121α112 �= 0. Now, with account taken of (43) and (45),
the general representation of a solution to the elliptic system with operator matrix (39) is written in the
form (5):

u1 = (α111∂1 + α121∂2)ϕ1 + α112∂1ϕ2, u2 = (α121∂1 − α111∂2)ϕ1 − α112∂2ϕ2, (46)

(∂11 + ∂22)ϕ1 = f1, (∂11 + ∂22)ϕ2 = f2, (47)

(α111∂1 − α121∂2)f1 + α112∂1f2 = 0, (α121∂1 + α111∂2)f1 + α112∂2f2 = 0. (48)
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Involving (33), rewrite (46):
u1 + iu2 = 2∂z [(α111 + iα121)ϕ1 + α112ϕ2]. (49)

Multiplying (47) by the corresponding coefficients, we infer
4∂z∂z̄[(α111 + iα121)ϕ1 + α112ϕ2] = (α111 + iα121)f1 + α112f2. (50)

Equations (48) are rewritten as

2∂z̄[(α111 + iα121)f1 + α112f2] = 0.

Hence, (α111 + iα121)f1 + α112f2 = 2ϕ(z) is an analytic function. Then from (50) we obtain
4∂z∂z̄[(α111 + iα121)ϕ1 + α112ϕ2] = 2ϕ(z),

2∂z [(α111 + iα121)ϕ1 + α112ϕ2] = z̄ϕ(z) + ψ(z)

(ψ(z) is an analytic function that has appeared after integration over z̄). Inserting the last expression in
(49), we find

u1 + iu2 = z̄ϕ(z) + ψ(z). (51)

Formula (51) coincides with the solution in [10], as it should be.
Since the matrix (39) is not symmetric, (12) implies the relation C ′A′ = DB′. If ũ is a solution to the

adjoint (transposed) equations A′ũ = 0 then u = CB′ũ is a solution to the initial equations

Au = ACB′ũ = BDB′ũ = BC ′A′ũ = 0.
Requiring the fulfillment of (12) for (40) and (44), find the matrices

C =

⎡
⎣ α111∂1 + α121∂2 α112∂1 + α122∂2

(α111 −
√

2α121)∂1 + (
√

2α111 − α121)∂2 −(α112 +
√

2α122)∂1 + (
√

2α112 + α122)∂2

⎤
⎦ ,

(52)

B =

⎡
⎣ α111∂1 − α121∂2 α112∂1 − α122∂2

(
√

2α121 − α111)∂1 + (
√

2α111 − α121)∂2 (α112 +
√

2α122)∂1 + (
√

2α112 + α122)∂2

⎤
⎦ .

The determinants of the matrices (52) look as follows:

|C| = −|B| = (
√

2α121α112 − 2α111α112 −
√

2α111α122)∂11

+ (
√

2α121α112 + 2α121α122 −
√

2α111α122)∂22

and differ by sign. Free parameters in (52) must be such that the determinant |C| is nonzero. Thus,
granted (44) and (52), the general representation of a solution to the elliptic system with operator
matrix (40) is written in the form (5):

u1 = (α111∂1 + α121∂2)ϕ1 + (α112∂1 + α122∂2)ϕ2,

u2 = [(α111 −
√

2α121)∂1 + (
√

2α111 − α121)∂2]ϕ1

+ [−(α112 +
√

2α122)∂1 + (
√

2α112 + α122)∂2]ϕ2,

(∂11 +
√

2∂12 + ∂22)ϕ1 = f1, (∂11 −
√

2∂12 + ∂22)ϕ2 = f2,

(α111∂1 − α121∂2)f1 + (α112∂1 − α122∂2)f2 = 0,

[(
√

2α121 − α111)∂1 + (
√

2α111 − α121)∂2]f1 + [(α112 +
√

2α122)∂1 + (
√

2α112 + α122)∂2]f2 = 0.

For (40), (44), and (52), relation (17) also holds, and the expression u = CB′ũ is the formula for
producing new solutions; i.e., Q = CB′ is the symmetry (recursion) operator.

Thus, the method of the present article makes it possible to find a general representation for a solution
not only to the equations of elasticity theory but also to other elliptic systems of equations. The method
is also applicable to systems of equations with variable coefficients. Then the corresponding formulas
must contain adjoint operators instead of transposed operators.
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