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Abstract—We find a simplest representation for the general solution to the system of the static
Lamé equations of isotropic linear elasticity in the form of a linear combination of the first derivatives
of three functions that satisfy three independent harmonic equations. The representation depends
on 12 free parameters choosing which it is possible to obtain various representations of the general
solution and simplify the boundary value conditions for the solution of boundary value problems as
well as the representation of the general solution for dynamic Lamé equations. The system of Lamé
equations diagonalizes; i.e., it is reduced to the solution of three independent harmonic equations.
The representation implies three conservation laws and some formula for producing new solutions
which makes it possible, given a solution, to find new solutions to the static Lamé equations by
derivations. In the two-dimensional case of a plane deformation, the so-found solution immediately
implies the Kolosov—Muskhelishvili representation for shifts by means of two analytic functions of
complex variable. Two examples are given of applications of the proposed method of diagonalization
of the two-dimensional elliptic systems.
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The article develops the approach that was suggested in [1, 2]. For an isotropic material and without
influence of the volume forces, the system of static Lamé equations in displacements of linear elasticity
theory has the form

where A and p are the Lamé constants; d;; is the Kronecker symbol; u; is the displacement vector; 0;
is the derivative with respect to the coordinate x;, j = 1,2,3; 0;; = 0;0; is the second derivative with
respect to z; and x;; and repeated indices imply summation.

For system (1), there exist different representations of the general solution by means of the resolving
potentials [3, 4]. In the present article, we obtain a simplest representation for the general solution to (1)
in the form of a linear combination of the first derivatives of three functions satisfying three independent
harmonic equations. This representation looks as follows:

u; = (@] + €jmsamOs)p1 + (80j + jmsbmOs)p2 + (V0j + €jmscmOs) 3, §=1,2,3, (2)
where the functions 1, 2, and 3 meet the equations
Orrp1 = f1, Okrp2 = fa, Okkp3s = f3, (3)
and the functions f1, fa, and f5 satisfy
(A + 20)0; + p€imsmOs| f1 + [(A 4 21) B0; + p1€imsbmOs] f2
+ [N 4 2u)70; + peimscms| fz = 0, i=1,2,3. (4)

Here «, 8, v, @m, bm, and ¢, with m = 1,2, 3 are arbitrary parameters such that the three quantities
Esnp(abncp + Benap +vanby), s = 1,2, 3, cannot vanish simultaneously. Here €, is the antisymmetric
Levi—Civita tensor.
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Choosing the free parameters, we can obtain various versions of the representations of the general
solution (2)—(4) and simplify the boundary conditions. For a,, = 0 withm =1,2,3, =0, and v =0,
(2)—(4) imply the representation [1] of the general solution for the dynamic equations (1).

Denoting by A, C, D, and B the matrices of the operators in (1)—(4), where D is a diagonal matrix,
we obtain AC' = BD. Then the general solution (2)—(4) to (1) (Au = 0) has the form [5]

u=Cyp, Dp=f  Bf=0. (9)

The matrix of the operator A of (1) is as follows:

(A + w)On1 + pOg (A4 p)or2 (A+ )3
A= (A + )01 (A + )02 + 1Ok (A =+ 1)023 . (6)
(A + p)031 (A + p)0s2 (A + 11)033 + 110k

The determinant of the matrix (6) is equal to
Al = (A +2p)p*(O)* = D1D3, D= (A+2)0k, Dy = D3 = pdj, (7)

while the matrix D in the solution (5) is diagonal:

A+20)0 0 0
D:diag(D17D27D3) = 0 /Lakk» 0 : (8)
0 0 Ok

From (7) we see that the Lamé system (1) is elliptic if |A| > 0 for all real values of the symbols 9,
Ok 7 0; i.e., the constants satisfy

A2 >0, p#0; 9)
system (1) is strongly elliptic if [6]
A+2u >0, w> 0. (10)

The specific deformation energy 2® = Aejieps, + 2ueijicij, €ij = (Qiu; + 0ju;)/2 is a positive definite
quadratic form if [3]

3\+2u>0,  p>0. (11)

The domains of admissible values for the constants A and p defined by (9)—(11) are shown in the figure.
The domain of ellipticity for (9) consists of three parts I, II, and III; moreover, A and p can be negative.
The domain of elasticity for (11) is part II; here A can be negative but y > 0. The domain of strong
ellipticity for (10) includes parts Il and III. If the constants A and p belong to parts [ and III then
equations (1) are no longer equations of elasticity theory because conditions (11) are not fulfilled.

Suppose that the matrices C' and B have the form Cj, = op,0, and By, = B;5,0s, Wwhere a;pq and
Bisp are some coefficients. Choosing the displacements in the form

uj = Cjqpg = jp10pp1 + jp20pa + jp3Opips, Jhp=1,2,3,
and requiring the fulfillment of the relation
AC = BD, A;ijCjq = BipDpy, (12)
we obtain the matrices
ad1 + as03 — agOy PO + baO3 — b3dy YO + 203 — c309
C=|ady+a301 —a103 [0y +b3d) — b3 Oy + e300 — 103 | » (13)
ads + a1.09 — a201 (03 + b102 — b0 03 + 102 — 201
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adl + )\_”2# (a283 — agaz) M;f’“ﬂal + bo03 — b3y )\_fﬂ’)’al + 03 — 309
B = aldy + )\_’l_LQM (CL381 — a183) )\:2”,882 + b301 — b105 Mj’”’yag + 301 — 103 | >
0433 + Aflu (a132 - 0231) Af"ﬂ@g + b182 - b281 )\—22“’)/63 + 0132 - 0231,

or, briefly,
qu = [aaj + Sjmsamasa ,8(9] + 5jmsbmasa 76j + 5jmscmas]7

A+2u

A+2
Bip = aai + a Eimsamas; /881 + 5imsbm857 M781 + 5imscmas )
A+ 2p I

where o, 3, 7, Gm, b, and ¢, with m = 1,2, 3 are iree parameters.

A straightiorward check shows that (12) holds for the matrices (6), (8), and (13). The determinants
of (6) and (8) obviously coincide: |A| = |D| = D1 D3. The determinant of the matrix C'in (13) is equal to

|C| = [esnp(abncp + Benap + yanby)O0s| Ok
= {[a(bzcs — b3ca) + B(caaz — czaz) + v(azbs — azbe)|01
+ [a(bscr — bicg) + B(csar — crag) + y(asby — a1b3)]0s
+ [Oz(blcg — bgcl) + ﬁ(clag — Czal) + ’)’(albg — agbl)]ag}akk. (14)

The matrix B in (13) has the same structure as C'. To obtain | B|, we must replace in (14) the coefficients

1 A+2p A+2p
N T O A
then
>\+2u A2 I
B| = sn bn Cp, =
|B| [s p(a e+ B )\+2Ma + " ’y)\+2 0s | Ok = |C,

i.e., the determinants of C and B coincide.

The free parameters in (13) must be such that the determinant |C| in (14) is nonzero; i.e., the
coefficients egpp(abpc, + Benap + yanby), s = 1,2, 3, at s must not vanish simultaneously.

For the dynamic equations (1), the matrices C and B in (13) must coincide, then

A2 A+2u
B, v = v
0 0

Am, ﬁ =
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92 OSTROSABLIN

moreover, a, =0 for m =1,2,3, =0, v=0, Cj, = Bjp = [a0}, €jmsbmOs, €jmscm0s); i.e., the
matrices are similar to those obtained earlier for dynamics [1].

Since the matrix D in (8) looks as diag (A + 2u, p, w)diag (Okk, Okk, Okk), in the product BD,
the factor diag (A 4+ 2u, w, p) can be attached to Bj; then B takes the form (4), and in (3) D =

diag (Okk, Okks Okk)-
Thus, granted (6), (8), (12), and (13), the general solution (2)—(4) to (1) in the form (5) looks as
follows:

up = (ady + a203 — a302)p1 + (B0 + ba03 — b3d2)p2 + (Y01 + c203 — c302) 3,
ug = (@dy + az01 — a103)p1 + (602 + b301 — b103) o + (702 + 301 — €103) w3, (15)
Uy = (aag + a10y — agal)gm + (583 + b109 — bg@l)wz + (’}’83 + c109 — 0281)(,03,
where the functions 1, 9, and (3 satisfy three independent equations (3) and the functions f1, fo, and
[f3 enjoy
(A +2p)adr + pazds — azda)] fi + [(A + 21) 801 + p1(b205 — b392)] fo
+ [(A +2u)701 + p(c20s — c302)]f3 = 0,

(A +2u)ads + plazor — a105)] fi + [(A + 2u) 302 + p1(b301 — b105)] fa
+ [(A +20)702 + pu(c301 — €105)] f3 = 0, (16)

(A +2p)ads + p(a10y — azdh)] fi + [(A 4 21) 803 + 11(b192 — ba01)] fo
+ [(A 4 20)705 + p(c102 — c201)] f3 = 0.
The strains o;; = 0; are defined via the displacements by Hooke’s law
Oij = )\(5ij8kuk + /L(aiu]' + 8jui);
moreover, with account taken of (2) and (15), we infer
Oij = [a()\dijc‘)kk + 2#8@') + M(Eimsaj + Ejmgai)amas]gm + [B()\(Sijakk + 2#8@')
+ 11(€ims0j + €jms0i)bmOs)2 + [Y(AijOkk + 214055) + 11(€imsOj + €jms0i)CmOs) 3.
Relations (12) imply
C'A= DB, CipAij = DpiBj;, (17)
where the prime stands for matrix transposition. If At = 0 then we obtain from (17) that C'Aa =
DB'a= Dy = 0; i.e., o = B't satisiy three separate harmonic equations. Granted (12) and (17), the
formulas u = Cyp, ¢ = B'u, and Au = 0 take the solutions to the equations Au =0 and Dy =0 to
each other. In general, there is no one-to-one correspondence between u and ¢ though A and D are
equivalent as matrices since C' and B are nondegenerate square matrices. Therefore, to avoid the loss of
a part of the solutions, in the general solution (5) or (15), (3), (16), we take account of the functions f

that are the kernel of B.
Granted (13), the functions ¢, = B;,t; take the form

Y1 = [()\ + 2#)0481 + /Lgimsamas]aia Y2 = [()\ + 2#)681 + /Lgimsbmas]ﬂiy
Y3 = [(>\ + 2#)’782 + ,Ugimscmas]ai'

The expression uw = C'B'w is a formula for producing new solutions; i.e., if Aa = 0 then (12) and (17)
imply that w = C'B’@ is a new solution:

Au= ACB'i = BDB'ts = BC'Au = 0.
Hence, Q = CB'is the symmetry (recursion) operator [5, 7]; in addition,
Qij = CipB,; = CipBjp = Ci1 Bj1 + CiaBja + Ci3Bj3
= (0482 + Eimsamas)[(A + 2#)0&8]' + ngnranar] + (ﬁaz + Eimsamas)[()\ + 2#)683 + ,Ugjnranar]
+ (’782 + Eimsamas)[(A + 2#)’78] + ngnranar]a
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DIAGONALIZATION OF THE SYSTEM OF STATIC LAME EQUATIONS 93
or, involving (13), we infer

Qu = (A +2p)a1ka1,011 — (A + 3p)a1kaar012 + (A + 3p)a1kas,pO13
+ pagraar002 — 241035 a41,003 + paz,az,0s3,

Q21 = (A + 2p) 1,045,011 + (N + 2p)a1pa1, — paakaak]O12
+ [— (AN 4 2p)arkagr + pagkaar]013 — pa1paar022 + p(aiasy + azkaar)023 — (Lakas;0s3,

Q31 = —(A+2p)aiazioin + (A + 2p)aikask + pagkaar] 012
+ (A + 2p)argar, — paskask)Ois — pagkaar 022 + p(—a1,a4r + a2ka3k)023 + (a1,a3;033;

Q12 = pairagO1 + (A + 2u)aipa1y — paggaqr]O0iz + p(—aikasy + asgpaar)oi3
— (A4 2p)a1paar022 + [(A + 2p)arxask + pagkaar] 023 — pas,as;0s3;

Qo2 = pagrag011 + (X + 3p)a1pa4,012 — 2025 a41,013
+ (A + 2p)arrairdaz — (A + 3)a1xar 023 + paskasr03s;

Q32 = —pa3iaspO1n + [—(A + 2p)arkasy + paskaar|Oi2 + paikaa, + asgasi)013
+ (A + 2p)arpagrO2 + [(A + 2p)arkair — pagkasy)023 — [1015021033;

Q13 = —paipazkoin + plaikasy + askaar)O12 + (A + 2pn)a1gar, — pasiase)Ois
— pagkasr02 + [—(A + 2p)a1kaa, + pasgask|O2s + (A + 2p)a1,asr03s;

Q23 = —pasiasr011 + p(—a1kasy + agpaar)o0i2 + (A + 2p)a1kaar + pagkasy|Oi3
+ pa1kag,022 + (A + 2p)aipa1r — paskask]02s — (A + 2p)a1,a2;033;

Q33 = pasgkaspOi1 — 2paskazkOiz — (A + 3p)airas,0i3
+ pagkas,0a2 + (A + 3p)a1kas,023 + (A + 2p)a1,a1;0s3,
where we put
a B v
ar b1 <
Qi = , (18)

ag bg (6]

a3 bz c3

Ak QK = ;1041 + Q2052 + A;3043, i,j=1,4.
If u; is a solution to (1) then from (17) it follows that

CilAijuj = Dllleuj = 8kk[a(>\ + 2[1,)83' + qumsamas]uJ'
= 0s0kk[a(X + 2p)us — pEsmjamu;] = 0,

CizAijuj = Doy Bjouj = akk[ﬂ()\ + 2,(1,)(9]‘ + uejmsbmas]uj
= 050,k [BN + 2p)us — p€smbmuj] = 0, (19)

CizAijuj = D33Bjzuj = Opi[ V(X 4 204)0j + HE jmsCmOs|u;
= OsOkk[v(A + 2p)us — pesmjemu;] = 0.
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94 OSTROSABLIN

All three equations in (19) are similar and have the form of the conservation law 9sAs = 07, 8], where
the conserved currents are equal.

Ag = Ogi[a(N + 2p)us — pesmjamu;l, s=1,2,3,
Bs = Op[BN + 21)us — pesmibmus], Cs = Opr[y(N + 21)us — pesmjcmuy).
Rewrite (2) as
u; = 0j(ap1 + B2 +793) — €jsmOs(amp1 + bmpa + cmps),  J=1,2,3. (20)

If in (20) we put apy + B2 + Y3 = ¢ and —(amp1 + bmp2 + cmps) = ¥, for m = 1,2, 3 then (20)
coincides in its form with the Kelvin—Lamé representation [4, 5].
Rewrite (4) in the form

Oil(A+2u)(afr + Bf2 +7f3)] — €ismOs[i(am f1 + by fo + cm f3)] = 0, i=1,2,3. (21)
[fin (21) we put
A+2u)(afi +Bf2a+7f3) =g, —plam f1 + b fo + emf3) = gm, m=1,2,3, (22)
then (21) becomes
0i9 + €ismOsgm = 0, i1=1,2,3; (23)

moreover, (23) coincides in its form with the equations for the kernel of C' in the Kelvin—Lamé
representation (20) [5].

In (22), there are four equations for three functions f;. For the solvability of this system, the rank of
the matrix a; in (18) must be three, and the determinant of the extended matrix

a B v g/(A+2p)
by = | by «a —g1/p (24)
az by —g2/ 1k
| a3 b3 o3 —g3/1
must be zero. Find the algebraic complements to the elements of the last column in (24):
a1 by a B v a B v a (B v
m = —l|ay by ¢l m1 = |ay by ca|> me = —la; by c1|> ms = lay b1 c1f> (25)
as bz c3 as b3 c3 ag bz c3 ag by ¢
where
m = —(a1bacs + agbscr + asbico — asbacy — agbics — arbses),

my = Oz(bgCg — bgcg) + 5(62@3 — Cgag) + ’Y(agbg — agbg),
ma = a(bscr — bics) + B(czar — craz) + y(azby — a1bs),
ms = Oé(blcg — bgCl) + ﬁ(cla2 — 62(11) + 7(a1b2 — CLle).
In (25), the quantities m; coincide with the coefficients at 9 in the determinant |C| in (14) and

m? 4+ m3 +m? # 0. This inequality means that the rank of the matrix a;, in (18) is equal to three;
moreover, granted (25), the compatibility condition for (22) takes the form

pmg — (A + 2p)(migr + mage + msgs) = 0. (26)
We must add (23) to (26): The matrix of system (26), (23) is as follows:

pmo —(A+2u)m1 —(A+2p)me —(A+2p)ms
M — 81 0 —83 82
82 83 0 _81
i 03 —0s 01 0 |
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DIAGONALIZATION OF THE SYSTEM OF STATIC LAME EQUATIONS 95

The determinant of this matrix

|M| = (A +2p)(m101 + ma0s + m303) Ok = (A + 2u)|C| # 0
is proportional to the determinant |C| in (14). Hence, the solution of (26), (23) is equivalent to the
solution of (4) or (16).

The Kelvin—Lamé representation of the form (20) is applied in dynamic problems [4], and it is unclear
how to use it in the static case. Though this representation satisfies AC' = C'D [5], the matrices A and D
cannot be assumed equivalent since A is of third order, D is of fourth order, while C' is a nonsquare
matrix of size 3 x 4. In algebra, some matrices A and D are regarded as equivalent if AC' = BD, where
C' and B are nondegenerate square matrices. The equivalence conditions are not fulfilled for the Kelvin—
Lameé representation [4, 5]. In the representation (2)—(4) or (15), (3), (16), all matrices are square (or
order three) and nondegenerate; i.e., the equivalence is fulfilled.

Consider the case of a plane deformation for which u; and uo are independent of z3 and ug = 0. Then,
instead of (6)—(8), we infer

A [()\ +20)011 + p02 (A + 12)012 } ’ (27)

(A + )01 pO11 + (A + )02
|A| = (A + 2u) (011 + 922)* = D1 Dy, Dy = (A +2p)(011 + 022), Dy = (011 + 022);

(A +2p) (011 + O22) 0
0 (011 + O22)

D = diag (D1, Dy) =

] , IDI=A] (28)

The system of equations for uy, ug is elliptic if (A + 2u)p > 0. The matrices (13) take the form

A+2
ad) — az0y [0y — b30s . B- ady — [y, a302 7 B0 — b30s ' (29)
ads + azd o + b3dy ady + y t,0301 B0 + byoy

The determinants of (29) are equal to |C| = |B| = (abs — Bas) (011 + 0a2); and also abs — Bag # 0.

The matrices (27)—(29) satisfy (12), (17). The factor diag (A + 2u, p) in D in (28) can be attached to
the matrix B of (29). Then the solution to (1) in the two-dimensional case with matrix (27) is as follows:

up = (@01 — az02)p1 + (B0 — b302) 2, ug = (a0y + az01)p1 + (802 + b301)p2, (30)
(011 + O22)1 = fi, (011 + 022)p2 = fo, (31)

J1 4 [(A+2p) 801 — pb3da] f2 = 0,
(A +2p)ads + pazdh] fi + [(A + 2p) 802 + pbsdi] f2 = 0.

C =

(32)

The following formulas are well known [9] (the bar over a letter stands for complex conjugation):
0, = (01 —i0s)/2, 0 = (01 +1i02)/2, z =1z +iz9, i=+-1. (33)
[nvolving (33), rewrite (30) and (32):

w1 + iug = O1[apr + B + i(azpr + bzpa)] + i [apr + B + i(azpr + bzp)]
= 20z[aup1 + B +i(agpr + bapo)], (34)

0[N+ 2p)(afi + Bf2)] — da[p(as f1 + b3 fa)] =0,
KA+ 2u)(afi + Bf2)] + O1u(as fi + b3 f2)] = 0.

Equations (35) are the Cauchy—Riemann conditions for the analytic function (here the prime stands for
the derivative with respect to z):

Dip(zp= (\ + 2u)(afy + Bf2) +ipazfr + b3 f2).

(39)
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The last formula implies
1 (2) = (A +2u)(af1 + Bfa) —ip(azf1 + b3 f2),

2(afi + Bf2) = A "‘12N [(I),l(z) + <I>/1(z)]a (36)

2i(azf1 +baf2) = [@1(2) — ®1(2)].

Now, from (31) and (36) we obtain
2(011 + 022)(ap1 + B2) = 2(afi + Bf2), 2i(011 + 022)(azp1 + bap2) = 2i(as f1 + b3 fa2);

1
I

2(811 + 822)[0&(,01 + ﬁ%p2 + Z'(613801 + b3902)]
. A+ 3u /
=2[af) + Bfe +i(asfr + bsfa)] =

A+
@ _ /
O+ 2 1)

P .
(A +2p)p =)
Since 911 + Ogo = 40,05, from the last relation we find
A3,

A
@ _ /
O+ 201 7

()‘"1'2:“):“ q)l(z)7

NZ‘E(Z) —(2),

20,0z a1 + B +i(azpr + b3p2)] = 4

7
A+ 3u A+ p (37)

2™ T a2
where 9(z) is an analytic function that has appeared after integration over z. Put
A+

4N+ 2u

20z a1 + B2 +i(azpr + b3pa)] = 4

)N(I)I(Z) = SO(Z)7

Then from (34) and (37) we infer
o , A+ 3p
uy +iug = 2p(z) — 2¢'(2) — P(2), = v (38)

Thus, in the two-dimensional case, the general solution (30)—(32) implies the well-known Kolosov—
Muskhelishvili formula (38) [9] which gives a representation for the displacements via two analytic
functions ¢(z) and ¥ (z) of the complex variable z = 1 + ixs.

Formula (38) is effectively applied to solving two-dimensional boundary value problems of elasticity
theory[9]. Nevertheless, in considering boundary value problems, we can also directly use solution (30)—
(32), and in the space problems, the general representations (3), (15), and (16). The presence of free
parameters in these representations makes it possible to simplify the boundary conditions.

Granted (29), in the two-dimensional case, we also find the symmetry (recursion) operator @ =
CB'[5,7];, here

Q11 = (A +2u)(a® + 2o — (A + 3u)(aag + Bbs)O12 + (a3 + b3) Do,
Q21 = (A +2p)(aag + Bbg)or + [(A + 2u)(a? 4 3%) — ,u(a% + bg)]@lg — p(aas + Bbs )09,
Qu2 = plaaz + Bb3)on1 + [(A+ 2u)(0® + 5%) — p(a3 + b3) | 012 — (A + 2p) (a3 + Bb3)Daa,

Qo = 11(a3 + b3)d11 + (A + 3p)(aas + Bbs)d12 + (A + 2u) (a? + 52)aa.
Relations (17) and (19) imply the conservation laws [7, 8]

CilAiju]' = Dllleuj =0 (811 + 822)[0[()\ + 2,u)u1 + /LG;J,ZLQ]
+ 82(811 + 822)[04()\ + 2/.L)UQ — ,uagul] = 01 A1 + 0 Ay = 0,

CipAijuj = Do Bjouj = 01(011 + 022)[B(A + 2p)ur + pbsus]
+ 82(811 + am)[ﬁ()\ + 2#)’&2 — /ngul] = 01B1 + 0By = 0.
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Conservation laws can also be applied in solving boundary value problems [8].

The above-proposed method of diagonalization of the system of static equations of elasticity theory
and obtaining the general solution can also be applied to other systems of equations of elliptic type.
Consider, for example, two systems of equations from [10]. The matrices of the operators for these
systems are as follows:

A= 811 - 822 _2812 : (39)
2001 O — O22

s 011 — O V2012 . (40)
V2 01 —011 + O22

The matrix (39) is nonsymmetric; i.e., it does not correspond to equations of elasticity theory. But (40)
neither corresponds to the equations of elasticity theory for a real material. For (40), we would have the
matrix of elasticity moduli ¢;; of the form

1 14v2 0
cij=| 14++2 1 0 |- (41)
0 0 -2

The matrix (41) is not positive-definite; i.e., it does not correspond to any real material.
The matrices (39) and (40) corresponds to elliptic systems [10] since

|A| = (011 — O22)? + 401192 = (D11 + Da2)* > 0,

|A| = (011 — 022)(—011 + O22) — 201122 = — (01111 + O2222)
= — (011 + V2012 + D92) (D11 — V2012 + D22) < 0 (42)

for any real values of the symbols 01, 02, and 011 + 022 # 0. Quadratic forms in the parentheses in the
last expression of (42) are positive definite.
Expressions (42) imply that the equivalent diagonal matrices D for (39) and (40) must have the form

D 011 + 022 0 ’ (43)
0 011 + Ooo
2

D d11 + V2012 + O 0 . (44)

0 o1 — V2012 + O

Requiring (12) for (39) and (43), find the matrices
o 11101 + a12102 11201 B 11101 — 12102 a11201 | (45)
12101 — 1110y —aq1209 12101 + 11102 11209

Moreover,
|C| = |B| = —ai1210112(011 + 022).

The coefficients in (45) are free parameters but ag91 112 # 0. Now, with account taken of (43) and (45),
the general representation of a solution to the elliptic system with operator matrix (39) is written in the
form (5):

ur = (011101 + 012102) 1 + 1120192, up = (02101 — 01102)1 — 1120292, (46)
(011 + 022)1 = f1, (011 + O22)p2 = fo, (47)
(uaa@—0u2102)f 1011201 f2 = 0, (12101 + @11102) f1 + 11202 f2 = 0. (48)
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[nvolving (33), rewrite (46):
uy + dug = 20, (11 + ia121)p1 + ar122). (49)
Multiplying (47) by the corresponding coefficients, we infer
40,0z [(a111 + ia21)p1 + ari2p2] = (a111 +iair) f1 + iz fo. (50)
Equations (48) are rewritten as
20z[(c111 +iai21) f1 + 2 f2] = 0.
Hence, (111 + ia121) f1 + @112 f2 = 2¢(2) is an analytic function. Then from (50) we obtain
400z [(a111 + ion21)p1 + ar12¢2] = 2¢(2),
20, [(c111 + ia121) @1 + an12p2] = Zp(2) + P(2)

(¥(2) is an analytic function that has appeared after integration over z). Inserting the last expression in
(49), we find

ur + ug = zp(z) + (2). (51)
Formula (51) coincides with the solution in [10], as it should be.

Since the matrix (39) is not symmetric, (12) implies the relation C’A’ = DB’. I 4 is a solution to the
adjoint (transposed) equations A’a = 0 then v = C' B’ is a solution to the initial equations

Au= ACB'u = BDB'a = BC"A'u = 0.
Requiring the fulfillment of (12) for (40) and (44), find the matrices

o a11101 + 12102 11201 + 12202
(111 — V2a121)01 + (V2111 — a191)92  — (112 + V20122)01 + (V2112 + a192) 02
(52)
B 11101 — 12102 11201 — 12202
(V20121 — a111)01 + (V2111 — a121)02 (112 + V20122)01 + (V20112 + a122) 02

The determinants of the matrices (52) look as follows:

|C| = —|B| = (V2ai210112 — 201110112 — V20111 0122) 011
+ (V201910012 + 201210199 — V2011101122 a2

and differ by sign. Free parameters in (52) must be such that the determinant |C| is nonzero. Thus,
granted (44) and (52), the general representation of a solution to the elliptic system with operator
matrix (40) is written in the form (5):

up = (11101 + @12102)¢1 + (11201 + a12202) 2,

ug = [(o11 — V2a121)01 + (V20111 — a121)da] 01
+ [—(a112 + V20192)01 + (V20112 + a192) Do,

(D11 + V2012 + D22) 01 = f1, (D11 — V2012 + Da2) 2 = fo,
(011101 — 0112102) f1 + (011201 — 0112202) f2 = 0,

(V2121 — a111)01 + (V20111 — a121)d] f1 + [(a112 + V2a122)01 + (V20112 + a122)s] fo = 0.

For (40), (44), and (52), relation (17) also holds, and the expression v = CB’@ is the formula for
producing new solutions; i.e., @ = C'B’ is the symmetry (recursion) operator.

Thus, the method of the present article makes it possible to find a general representation for a solution
not only to the equations of elasticity theory but also to other elliptic systems of equations. The method
is also applicable to systems of equations with variable coefficients. Then the corresponding formulas
musticontainradjointoperatorsiinstead of transposed operators.
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